mod

(number mod number) 🡒 number

The keyword mod returns a generalized flavor of the remainder of the integer division defined by:

$$(a \text{ mod } b) \mapsto a - k_0b \text{ where } k_0 = {\text{argmax} \atop {k \in \mathbb{Z}} } \left( k |b| \leq a \right) $$

where $|b|$ is the absolute value of $b$.

Example:

table T = with
  [| as A |]
  [| -1 |]
  [| 0  |]
  [| 1  |]
  [| 2  |]

T.B = 2

show table "" a1b4 with
  T.A
  T.B
  T.A mod T.B