mod
(number mod number) 🡒 number, const autodiff operator
The keyword mod
returns a generalized flavor of the remainder of the integer division defined by:
$$(a \text{ mod } b) \mapsto a - k_0b \text{ where } k_0 = {\text{argmax} \atop {k \in \mathbb{Z}} } \left( k |b| \leq a \right) $$
where $|b|$ is the absolute value of $b$.
table T = with
[| as A |]
[| -1 |]
[| 0 |]
[| 1 |]
[| 2 |]
T.B = 2
show table "" a1b4 with
T.A
T.B
T.A mod T.B